Update on Antiretroviral Therapy in Adults

Khuanchai Supparatpinyo Department of Medicine Chiang Mai University

Objectives

- When to start?
- What to start?
- ART in patients with active OI
- HIV treatment failure

When to Start?

- Exact CD4 count at which to initiate therapy is not known, but evidence points to starting at higher counts
- 2 large RCTs (START and TEMPRANO) have addressed the optimal time to initiate ART

Strategic Timing of Antiretroviral Therapy (START)

- 4685 HIV-positive adults with CD4>500 cells/mm³ were followed for a mean of 3.0 years
- Randomized to
 - start ART immediately, or
 - defer until the CD4<350 cells/mm³ or until the development of AIDS or condition that dictated the use of ART
- Primary composite end point:
 - serious AIDS-related event
 - serious non—AIDS-related event
 - death from any cause

The INSIGHT START Study Group. N Engl J Med 2015 Jul 20. [Epub ahead of print]

START: Primary and Secondary End Points

End Point	Immediate Gro (N = 2		Initiation Deferred-Initiation Jp Group 326) (N=2359)		Hazard Ratio (95% CI)†	P Value
	no.	no./100 person-yr	no.	no./100 person-yr		
Composite primary end point	42	0.60	96	1.38	0.43 (0.30–0.62)	< 0.001
Components of the primary end point						
Serious AIDS-related event	14	0.20	50	0.72	0.28 (0.15–0.50)	< 0.001
Serious non–AIDS-related event	29	0.42	47	0.67	0.61 (0.38–0.97)	0.04
Death from any cause	12	0.17	21	0.30	0.58 (0.28–1.17)	0.13
Tuberculosis	6	0.09	20	0.28	0.29 (0.12-0.73)	0.008
Kaposi's sarcoma	1	0.01	11	0.16	0.09 (0.01-0.71)	0.02
Malignant lymphoma	3	0.04	10	0.14	0.30 (0.08–1.10)	0.07
Cancer not related to AIDS	9	0.13	18	0.26	0.50 (0.22–1.11)	0.09
Cardiovascular disease	12	0.17	14	0.20	0.84 (0.39–1.81)	0.65
Other secondary end points						
Grade 4 event‡	73	1.06	73	1.05	1.01 (0.73–1.39)	0.97
Unscheduled hospitalization§	262	4.02	287	4.40	0.91 (0.77–1.08)	0.28
Grade 4 event, unscheduled hospitalization, or death from any cause	283	4.36	311	4.78	0.91 (0.77–1.07)	0.25

The INSIGHT START Study Group. N Engl J Med 2015 Jul 20. [Epub ahead of print]

Conclusions

 The initiation of antiretroviral therapy in HIVpositive adults with a CD4+ count >500 cells/mm³ provided net benefits over starting such therapy in patients after the CD4+ count had declined to 350 cells/mm³

The INSIGHT START Study Group. N Engl J Med 2015 Jul 20. [Epub ahead of print]

A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa (TEMPRANO)

- CD4+ count <800 cells/mm³ without WHO indication for ART
- Participants were randomly assigned to
 - deferred ART
 - deferred ART plus IPT
 - early ART
 - early ART plus IPT
- The primary end point was a composite of diseases or death from any cause at 30 months

The TEMPRANO ANRS 12136 Study Group. N Engl J Med 2015;373:808-22.

TEMPRANO Study

The TEMPRANO ANRS 12136 Study Group. N Engl J Med 2015;373:808-22.

Primary outcome

The risk of death or severe HIV-related illness was lower with early ART than with deferred ART

Conclusions

 In this African country, immediate ART and 6 months of IPT independently led to lower rates of severe illness than did deferred ART and no IPT, both overall and among patients with CD4+ counts ≥500 cells/mm³

The TEMPRANO ANRS 12136 Study Group. N Engl J Med 2015;373:808-22.

When to start?

 ART is recommended for all HIV-infected individuals, regardless of CD4 T lymphocyte cell count, to reduce the morbidity and mortality associated with HIV infection (AI)

When to start?

Adultsª (>19 years)	ART should be initiated in all adults living with HIV at any CD4 cell count	Strong	Moderate NEW
	As a priority, ART should be initiated in all adults with severe or advanced HIV clinical disease (WHO clinical stage 3 or 4) and individuals with CD4 count ≤350 cells/mm ³	Strong	Moderate
Pregnant and breastfeeding women	ART should be initiated in all pregnant and breastfeeding women living with HIV at any CD4 cell count and continued lifelong	Strong	Moderate UPDATED

WHO Recommendation, Sep 2015

When to start?

เกณฑ์การเริ่มยาต้านไวรัสในประเทศไทย

ให้ยาต้านไวรัสในผู้ติดเชื้อทุกรายในทุกระดับ CD4 โดยเฉพาะอย่างยิ่งกรณี CD4 < 500 cells/mm³

ในกรณี CD4 > 500 cells/mm³ ควรพิจารณาประเด็นต่อไปนี้อย่างเคร่งครัด

- ผู้ติดเชื้อที่จะเริ่มยาต้านไวรัสต้องเข้าใจถึงประโยชน์และผลข้างเคียงของการรักษา เข้าใจประเด็น ความสำคัญของ adherence ยินดีที่จะเริ่มยาต้านไวรัสและมีความมุ่งมั่นตั้งใจรับยาต้านไวรัส อย่างสม่ำเสมอ
- ผู้ติดเสื้อมีสิทธิเลือกที่จะยังไม่รับยาถ้ายังไม่พร้อมในการเริ่มยาต้านไวรัส
- ในกรณีผู้ติดเชื้อที่ยังไม่มีอาการ ประโยชน์ต่อตัวผู้ติดเชื้อเองยังไม่ชัดเจน แต่มีประโยชน์ในด้าน การสาธารณสุขเพื่อลดการถ่ายทอดเซื้อ
- ผู้ให้การดูแลรักษาควรพิจารณาเลื่อนการเริ่มยาไปก่อน หากพบมีปัญหาทางสภาพจิตใจหรือ สังคมที่ไม่เหมาะต่อการกินยาต่อเนื่อง

Thai Guidelines, Sep 2014

HIV Prevention

- ART is also recommended for HIV-infected individuals to prevent HIV transmission (AI)
- Perinatal transmission
 - use of combination ART during pregnancy has reduced the rate of perinatal transmission of HIV from approximately 20% to 30% to 0.1% to 0.5%
- Sexual transmission
 - HPTN 052 (1,763 HIV-serodiscordant couples): 96% reduction in transmission associated with early ART (HR 0.04; 95% CI, 0.01–0.27; *P*<0.001)

Oral pre-exposure prophylaxis to prevent HIV acquisition

HIV-negative individuals at substantial risk of HIV infection ^b	Oral PrEP (containing TDF) should be offered as an additional prevention choice for people at substantial risk of HIV infection as part of combination	Strong	High
	prevention approaches		NEW

WHO Recommendation, Sep 2015

What to Start?

Recommended Regimen Options

INSTI based (AI)	 DTG/ABC/3TC (HLA-B*5701 negative)
	DTG + TDF/FTC
	■ EVG/c/TAF/FTC (CrCl≥30)
	■ EVG/c/TDF/FTC (CrCl≥70)
	RAL + TDF/FTC
PI based (AI)	DRV/r + TDF/FTC

Alternative Regimen Options

NNRTI based	•	EFV/TDF/FTC (BI)
	•	RPV/TDF/FTC (VL<100000, BI)
PI based	•	ATV/c + TDF/FTC (CrCl ≥70 mL/min, BI)
	•	ATV/r + TDF/FTC (BI)
	•	(DRV/c or DRV/r) + ABC/3TC (BIII and BII)
		DRV/c + TDF/FTC (CrCl ≥70 mL/min, BII)

Other Regimen Options

INSTI based	-	RAL + ABC/3TC (CII)
NNRTI based		EFV + ABC/3TC (VL<100000, CI)
PI based	•	(ATV/c or ATV/r) + ABC/3TC ^{1,2} (CIII, CI) LPV/r (QD or BID) + ABC/3TC (CI) LPV/r (QD or BID) + TDF/FTC (CI)
Other	•	DRV/r + RAL (VL<100000, CD4>200, CI) LPV/r (BID) + 3TC (CI)

First-line ART regimens for adults

First-line ART for adults (including pregnant and breastfeeding women and people with TB and HBV coinfection)			
Preferred regimens	TDF + 3TC (or FTC) + EFV		
Alternative regimens	AZT + 3TC + EFV (or NVP) TDF + 3TC (or FTC) + NVP		
Special circumstances ^c	Regimens containing ABC, d4T ^b and boosted PIs		

WHO Recommendation, Jun 2013

First-line ART regimens for adults

NRTI backbone		NNRTIS		ยาตัวที่สามอื่นๆ
แนะนำ		แนะนำ		แนะนำ
TDF/FTC				
TDF + 3TC*	+	EFV	เนกรณฑลูบวย ไม่สามารถกินยา	LPV/r
หรือทางเลือก		หรือ	NNRTIs ได้	หรือ
ABC + 3TC		RPV		ATV/r
AZT + 3TC		NVP		

Thai Guidelines, Sep 2014

ART in patients with active OI

Considerations

- Degree of immunosuppression
- Availability of effective therapy for the OI
- Risk of drug interactions
- Overlapping drug toxicities
- Risk of the consequences of the development of IRIS
- Willingness of the patient to adhere to drug regimens

NIH, CDC, HIVMA/IDSA Guidelines for prevention and treatment of OI, June 2008

Worsening of patients after initiation of ART

- ARV adverse effects/complications
- Breakthrough of OI or
 inflammatory reactions after ART
 - Unmasking of preexisting OI
 - Immune reconstitution inflammatory syndrome (IRIS)
 - Recurrence of OI due to antiretroviral failure

Unmasking of preexisting Ol

25

Ols occurring after initiation of HAART

- Retrospective observational study in 2154 HIV patients (ACTG trials)
- OI occurred in fewer than 20% of patients on HAART

-Major Ols: 5%, Minor Ols: 17%

Approximately half occurred after first
 6 months of HAART

Ols occurring after initiation of HAART

- Risk factors for development of OIs
 - History of Ols
 - Low baseline CD4+ cell count*
 - High baseline plasma HIV-1 RNA level*
 - Female sex
 - Older age

*Risk factors for OIs in early months of HAART

Immune Reconstitution Inflammatory Syndrome (IRIS)

- AIDS patient
- Receiving ART with increased CD4 cells and suppressed plasma viral load
- Symptoms/signs compatible with OI or inflammatory reactions after ART
- Symptoms/signs are not due to new OI and adverse drug reactions

Immune Reconstitution Inflammatory Syndrome (IRIS)

- TB: fever, lymphadenopathy, worsening of lung lesions
- MAC: lymphadenopathy, worsening of skin lesions
- PCP: pneumonitis
- CMV: vitritis, neovascularization, retinal detachment, pneumonitis
- Cryptococcosis: lymphadenopathy, pneumonitis, aseptic meningitis
- Histoplasmosis: pneumonitis, cerebral lesions
- PML: worsening of cerebral lesions

Incidence and risk factors for IRIS

- Shelburne, et al. AIDS 2005; 19: 399-406.
 - A retrospective chart review from 1997-2000 in Houston, Texas
 - –180 HIV patients with TB, MAC, or *C. neoformans* and HAART
 - -31.7% developed IRIS

Time to diagnosis of IRIS

Risk factors for IRIS

Characteristic	Patients with IRIS	Patients without IRIS	P value for difference
No.	57	123	
Underlying opportunistic	57	123	
infection (No.)			
M. tuberculosis	26	60	
<i>M. avium</i> complex	11	24	0.897
C. neoformans	20	39	
Age at starting	38.5	38.9	0.39
HAART (years)			
Ethnicity (%)			
White, non-Hispanic	26	26	
Black, non-Hispanic	49	48	0.5519
White Hispanic	23	25	
Other	2	0	
Gender (male %)	93	79	0.018
Median CD4 cell count	30	33	0.529
prior to HAART			
$(\times 10^6 \text{ cells/l})$			
Median HIV-1 RNA	5.40	5.32	0.091
level prior to HAART			
(log ₁₀ copies/ml)	27	50	
Median interval between	27	50	< 0.001
initiating treatment for			
opportunistic infection and			
starting HAAKT (days)	0.2	60	< 0.001
at time of diagnosis of	33	69	< 0.001
underlying opportunistic			
infection (%)			22
intection (70)			52

Cryptococcal IRIS

- Patients who develop cryptococcal IRIS are more likely to be antiretroviral naive and have higher HIV RNA levels
- Appropriate management of IRIS is to continue ART and antifungal therapy (AII)
- In patients with severely symptomatic IRIS, short-course corticosteroids are recommended (BIII)

ACTG A5164

Immediate ART Initiation in Patients Presenting With Acute OIs

BI, bacterial infection; PCP, Pneumocystis jirovecii pneumonia.

Zolopa A, et al. PLoS One. 2009;4(5):e5575.

Study design

- Inclusion criteria
 - Presumptive or confirmed AIDS-related OI or BI
 - PCP
 - BI with CD4+ cell count < 200 cells/mm³
 - Pneumonia, sepsis, deep-seated infections
 - Cryptococcal disease; disseminated histoplasmosis
 - Mycobacterium avium complex (MAC), atypical mycobacterial infections
 - Toxoplasmosis, cytomegalovirus (CMV), end organ disease
- No patients with TB were enrolled.

Zolopa A, et al. PLoS One. 2009;4(5):e5575.

Study design

- Primary endpoint
 - 3 ordered categories of clinical and virologic outcomes at Week 48
 - Clinical progression or death (least optimal)
 - Survival without clinical progression; HIV-1 RNA > 50 copies/mL (intermediate)
 - Survival without clinical progression; HIV-1 RNA < 50 copies/mL (most optimal)

Zolopa A, et al. PLoS One. 2009;4(5):e5575.
Study design

- Secondary outcomes
 - Clinical progression or death over 48 weeks
 - Change in HIV-1 RNA and CD4+ cell count over 48 weeks
 - Rates of viral suppression after 24 weeks of antiretroviral therapy
 - Change in CD4+ cell count
 - Safety and tolerability
 - Adherence to antiretroviral therapy
 - Therapy switches, interruptions, and discontinuations Zolopa A, et al. PLoS One. 2009;4(5):e5575.

Main results

- Median duration from start of OI treatment to initiation of HAART
 - Immediate group: 12 days
 - Deferred group: 45 days
- No significant difference between immediate vs deferred groups in primary endpoint through Week 48 (P = .215)
 - Clinical progression or death: 14.2% vs 24.1%, respectively
 - Survival without clinical progression; HIV-1 RNA > 50 copies/mL: 38.3% vs 31.2%, respectively
 - Survival without clinical progression; HIV-1 RNA < 50 copies/mL: 47.5% vs 44.7%, respectively

Zolopa A, et al. PLoS One. 2009;4(5):e5575.

Secondary outcomes

- Immediate treatment associated with significant reduction in clinical progression or death through Week 48 (Odds ratio: 0.51 (99% CI: 0.23-1.15), P = .035)
- Immediate treatment associated with shorter time to clinical progression or death (Hazard ratio: 0.53 (99% CI: 0.25-1.09); P = .023)
- Immediate treatment associated with significantly shorter time to achieving CD4+ cell count > 50 or > 100 cells/mm³ (P < .001)

Zolopa A, et al. PLoS One. 2009;4(5):e5575.

Secondary outcomes

- No significant difference between groups in proportion of patients with HIV-1 RNA < 50 copies/mL at Week 48 (approximately 50% in both arms)
- No significant difference in clinical or laboratory adverse events or hospitalizations between groups over 48 weeks
- IRIS confirmed in 5.7% of immediate group vs 8.5% of deferred group

Zolopa A, et al. PLoS One. 2009;4(5):e5575.

Timing of ART for HIV-1 Infection and Tuberculosis

Timing of ART for HIV-1 Infection and Tuberculosis

Timing of ART for HIV-1 Infection and Cryptococcal Meningitis

- 177 HIV—infected adults in Uganda and South Africa who had cryptococcal meningitis and had not previously received ART.
- Randomly assigned to 1) earlier ART initiation (1 to 2 weeks after diagnosis) or 2) deferred ART initiation (5 weeks after diagnosis)
- Participants received amphotericin B (0.7 to 1.0 mg per kilogram of body weight per day) and fluconazole (800 mg per day) for 14 days, followed by consolidation therapy with fluconazole
- Assessed survival at 26 weeks

Boulware, et al. N Engl J Med 2014;370:2487-98.

Cumulative Probability of Survival According to Timing of ART in HIV with cryptococcal meningitis

Boulware, et al. N Engl J Med 2014;370:2487-98.

Appropriate time to initiate HAART in patients with acute OI

- In patients who have OI for which no effective therapy exists, treatment should be started as soon as possible (AIII).
- For patients with mild to moderate cutaneous KS, prompt initiation of ART alone without chemotherapy has been associated with improvement of the KS lesions.

Appropriate time to initiate HAART in patients with acute OI

- In the setting of some OIs, such as cryptococcal and TB meningitis, for which immediate therapy may increase the risk of serious IRIS, a short delay before initiating ART may be warranted
- In the setting of other OIs, such as PCP, early initiation of ART is associated with increased survival; therefore, therapy should not be delayed (AI)

TB and HIV Coinfection: ART Recommendations

- Immediately initiate TB treatment (AI)
- All patients should be treated with ART (AI)
 - Start ART within 2 weeks if CD4<50 cells/µL (AI)
 - Start ART within 2-4 weeks if CD4>50 cells/µL with severe disease
 - who have CD4 count 50-200 cells/µL (BI)
 - CD4 count >200 cells/µL (BIII)
 - ART can be delayed to 8-12 weeks if CD4>50 cells/ μL with mild disease
 - CD4 count 50-500 cells/µL (AI)
 - CD4>500 (BIII)

Appropriate time to initiate HAART in patients with acute OI

โรคติดเชื้อฉวยโอกาส	ระดับ CD4 (cells/mm³)								
	≤ 50	>	50						
วัณโรค (Tuberculosis)	ภายใน 2 สัปดาห์	รุนแรง*	ไม่รุนแรง						
		ภายใน 2 สัปดาห์	ระหว่าง 2-8 สัปดาห์						
Cryptococcosis	ระหว่าง 4-6 สัปดา	าห์							
PCP/MAC/อื่น ๆ	ระหว่าง 2-4 สัปดาห์								
CMV/PML/Cryptosporidium	ควรพิจารณาเริ่มให้	เ รียาต้านไวรัสกับผู้ป่วยเร็	วที่สุดเท่าที่จะทำได้						

Thai Guidelines, Sep 2014

HIV Treatment failure

Development of Viral Resistance

Selective Pressures of Therapy

Time

Adherence and Emergence of Resistant Virus Strains

Based on Friedland GH, et al. 1999;13(suppl 1):S61-S71.

Adherence and Emergence of Resistant Virus Strains

Based on Friedland GH, et al. 1999;13(suppl 1):S61-S71.

การดื้อต่อยาต้านไวรัสเอดส์

- เชื้อสามารถดื้อต่อยาบางชนิดโดยอาศัยการกลายพันธุ์
 เพียงตำแหน่งเดียว เช่น 3TC, NNRTI
- การดื้อยาบางชนิดต้องการการกลายพันธุ์หลายต่ำแหน่ง และมักเกิดขึ้นช้า ๆ เช่น ZDV, PI
- การให้ผู้ป่วยกินยาที่ไม่ได้ผลต่อไป จะทำให้เชื้อกลาย พันธุ์มากขึ้นจนเกิดการดื้อต่อยาในกลุ่มเดียวกัน

การให้ผู้ป่วยกินยาที่ไม่ได้ผลต่อไป

- SCOPE cohort of ART
 - experienced subjects (n = 106)
 - HIV RNA > 1000 c/mL
 - ≥ 1 resistance mutation
- Emergence of new mutations at 1 yr
 - Any mutation = 44% (95% CI: 33% to 56%)
 - NAM = 23% (95% CI: 15% to 34%)
 - PI = 18% (95% CI: 9% to 34%)

Hatano H, et al. CROI 2006. Abstract 615.

การตรวจการดื้อยา ARV

- ช่วยในการตัดสินใจเลือกยา ARV
- เพื่อให้ได้ประโยชน์สูงสุด ต้องอาศัยข้อมูลอื่นร่วมด้วย
 –ประวัติการกินยา ARV
 - การตอบสนองต่อยาเดิม

```
ภาวะภูมิต้านทานของผู้ป่วย
```

```
-ข้อมูลทางเภสัชวิทยา
```

```
–ความรู้ของแพทย์เกี่ยวกับ ARV
```

ข้อบ่งชี้ในการตรวจการดื้อยา ARV

- Acute HIV infection
- Chronic HIV infection
- Patients with virologic failure
- Patients with suboptimal suppression of viral load
- HIV-infected pregnant women

ไม่แนะนำให้ทำในกรณิต่อไปนี้
 –ผู้ป่วยที่มีเชื้อ HIV ในเลือด <500/m1
 –ผู้ป่วยที่หยุดกินยา ARV

วิธีการตรวจการดือยา ARV

- Genotype assays
 - —แสดงตำแหน่งที่เกิด mutations ซึ่งอาจทำให้ดื้อต่อยา
- Phenotype assays

 ตรวจความไวต่อยาโดยตรง แสดงความแตกต่างระหว่างเชื้อ จากตัวผู้ป่วยกับเชื้ออ้างอิง

• Virtual phenotype combined G+P databases

การแปลผลการตรวจการดื้อยา

- การแปลผล Genotypic tests คล้ำยกับ EKG, biopsy, MRI
- แพทย์ไม่จำเป็นต้องจำ drug resistance mutations ให้ได้ทั้งหมด
- การแปลผล Phenotypic tests คล้ำยการตรวจ antimicrobial susceptibility test แต่อาจไม่ตรงไปตรงมาทุกกรณี เช่น 5-fold resistance ต่อ 3TC ไม่เท่ากับ 5-fold resistance ต่อ d4T

การกลายพันธุ์ของ HIV

Mutation Nomenclature

Codon (position) PR = 1-99 amino acids RT = 1-560 amino acids M184V

Mutation Nomenclature

Mutation Nomenclature

ฐานข้อมูลที่ใช้ในการแปลผล

- The International AIDS Society-USA https://www.iasusa.org/content/drug-resistancemutations-in-HIV
- Stanford HIV RT and Protease Sequence Database http://hivdb.stanford.edu

Mutations in the Reverse Transcriptase Gene Associated With Resistance to Reverse Transcriptase Inhibitors (cont'd)

/							
Abacavir	K		L	Y		M	
	65		74	115	/	184	
	R		v	F		v	
	E						
	in .						
Didanosine	K		L				
	65		74				
	R		v				
	E						
	IN						
Emtricitabine	K					М	
	65					184	/ / / / / / / / / / / / / / / / /
	R					V	
	E					I	
	N						
	K					М	1
Lamivudine	65					184	
	R					V	
	E					1	1
	N						
	M K	D K					ТК
Stavudine	41 65	67 70				21	0 215 219
	L R	N R				W	I Y Q
	E						FE
	N						
Tanafovir	K	K					
Tenorovii	65	70					
	R	E					
	E						
	N						
	M	D K					тк
Zidovudine	41	67 70				21	0 215 219
	L	N R				W	YO
	-						FĒ

Mutations in the Reverse Transcriptase Gene Associated With Resistance to Reverse Transcriptase Inhibitors

Nucleoside and Nucleotide Analogue Reverse Transcriptase Inhibitors (nRTIs)

Multi-nRTI Resistance: 69 Insertion Complex (affects all nRTIs currently approved by the US FDA)

М	Α	V K	LTK
41	62	69 70	210 215 219
L	V	Insert R	WYQ
			F E

Multi-nRTI Resistance: 151 Complex (affects all nRTIs currently approved by the US FDA except tenofovir)

Α	V F	F	Q	
62	75 77	116	151	
V	I L	Y	M	

Multi-nRTI Resistance: Thymidine Analogue-Associated Mutations (TAMs; affect all nRTIs currently approved by the US FDA)

M	D	K	L T K
41	67	70	210 215 219
L	N	R	WYQ
			F E

Mutations in the Reverse Transcriptase Gene Associated With Resistance to Reverse Transcriptase Inhibitors (cont'd)

Nonnucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)

Efavirenz	L K K V V 100 101 103 106 108 I P N M I S		Y 181 C	Y G 188 190 L S A	P 225 H	M 230 L
Etravirine	V A L K V E 90 98 100 101 106 13 I G I E I A H G P* K	E V 88 179 A D 5 F 4 T	Y 181 C∗ I∗ V∗	G 190 S A		M 230 L
Nevirapine	Q L K K V V 100 101 103 106 108 I P N A I S M	2	Y 181 C I	Y G 188 190 C A L H		M 230 L
Rilpivirine	L K E 100 101 13 I E A P G K	E V 38 179 A L 5 C	Y 181 C I V	Y 188 L	н F 221 22 Y C	M 7 230 1 L

Mutations in the Protease Gene Associated With Resistance to Protease Inhibitors

Atazanavir	L /	GKL	V L E	М	М	G	I F		DI	I	A G		٧	1.1	N L I
+/-ritonavir	10 1	16 20 24	32 33 34	36	46	48	50 53	3 54	60 62	64	71 73		82	84 8	5 88 90 93
	1 /	ERI	IIQ	1		V	LL	L	E V	L	V C		Α	V V	S ML
	F	M	F	L	L		Y	V		М	I S		Т		M
	V	I.	V	V				Μ		V	ΤT		F		, , , , , , , , , , , , , , , , , , ,
	C	T						T			LA		1		,
		V						Α							
Darupavir/	V		N I					_							
Darunavin	v 11		V L			47	50	EA			7	1 L 14 70		04	L .
ritonavir	1		32 33			4/	50	54			1.	4 / 6		84	89
	1		I F			V	v	M			Г	2 V		v	v
						i se a se									
Fosamprenavir/	L		V		IVI 46	17	50				U 77	L	V	- 04	L .
ritonavir	10		32		40	4/	50	54			15	/6	82	84	90
	F .		1			V	v	L			2	V	A	v	M
	I D				L			V M					r c		
	K V							IVI					T		
Indinovirl	-	× 1	V	M	M						A 6	1 V	V	-	
Indinavin	L 10	N L	V 22	IVI 26	46			54			A G	L V	92	94	L 00
ritonavir	10	20 24 M 1	32	30	40			04 V			VS	V I	02 A	04 V	50 M
	R	R	1					v			τΔ	V I	F	v	IVI
	V	n			-								т		
Loninavir/		K I	V I		M	1	I F		,		A G		V	-	
Lopinaviir	10	20.24	22 33		46	47	50.57	2.54	Ē	22	71 73	76	82	84	90
ritonavir	F	M I	52 55			V	V I	V	1	0	VS	V	Δ	V	M
	r I	R	1.1		i	Δ		Ľ			T	v	F	*	Dec
	R	11			-	0		Ā					Ť		1
	v							M					Ś		I
	-							Т					_		I
								S							1

Mutations in the Protease Gene Associated With Resistance to Protease Inhibitors (cont'd)

Nelfinavir	L	D		М		М				Α		٧	V		N	L
Ronnavn	10	30		36		46				71		77	82	84	88	90
	F	N		1		1				V		1	A	V	D	М
	1					L				1			F T		5	
													s			
·																
Saguinavir/	L	L				G				А	G	٧	V			L
	10	24				48	54		62	71.7	73	77	82	84		90
ritonavir	1	I.				V	V		V	V	S	1	Α	V		M
	R						L			T			F			
	V												T c			
l.													2			
Tinranavir/	L		L	М	K	MI	1	Q		Н	T		V N		L	
	10		33	36	43	46 47	54	58		69	74		82 8	3 84	89)
ntonavii	V		F	1	Т	LV	Α	E		K	Р		LD	V	1	
				L			М			R			Т		N	
				V			V								V	

Mutations in the Envelope Gene Associated With Resistance to Entry Inhibitors

Enfuvirtida		G		٧	Q	Q	N	N			
		36	37	38	39	40	42	43			
		D	V	Α	R	н	т	D			
		S		M							
				E							
Maraviroc	See User	Note									
	500 050	Hote									

User Notes available at www.iasusa.org

Mutations in the Integrase Gene Associated With Resistance to Integrase Strand Transfer Inhibitors

·											_
Dolutegravir					F	E	G		Q	N	R
Ŭ					121	138	140		148	155	263
					Y	A	A		н	н	K
						K	2		к		
Elvitogravir	T		E	T	F				S Q	N	R
LIVILEYIAVII	66		92	97	121				147 148	155	263
	1		Q	A	Y				GH	H	K
	A		G						K		
	K								R		
		L	E	T	F	E	G	Y	Q	N	R
Raltegravir		74	92	97	121	138	140	143	148	155	263
		M	0	Α	Y	А	Α	R	н	н	К
						K	S	H	K		
								C	R		
Assessment of Virologic Failure

- Suboptimal Adherence
- Medication Intolerance
- Pharmacokinetic Issues
- Suspected Drug Resistance
 - Perform resistance testing while the patient is still taking the failing regimen or within 4 weeks of regimen discontinuation if the patient's plasma HIV RNA level is >1,000 copies/mL (AI)

DHHS guidelines, January 2016

Approach to Patients with Confirmed Virologic Failure

- The goal of treatment is to establish virologic suppression (AI)
- New ARV regimen should contain at least 2, and preferably 3, fully active drugs (AI)
- Adding a single ARV agent is **not** recommended **(BII)**
- If maximal virologic suppression is not possible, ART should be continued (AI) with regimens designed to minimize toxicity, preserve CD4 cell counts, and delay clinical progression
- Discontinuing therapy is **not** recommended (AI)

DHHS guidelines, January 2016

Questions?

Thank you for your attention