Diabetic Foot Ulcer : Role of Vascular Surgeon

Practical Point in Diabetic Foot Care 3-4 July 2017

Supapong Arworn, MD

Division of Vascular and Endovascular Surgery Department of Surgery, Chiang Mai University Hospital Email: <u>supapong.arworn@gmail.com</u>

Misunderstood about Diabetic Foot Ulcer Management

- We think that diabetic ischemic ulcer is microvascular disease.
- We think DM ischemic ulcer should have PAD symptoms before.
- We think DM ulcer cannot be treated.

Yamaguchi D. Wound 2011

Diabetic Foot Ulcer

Three components interplay

- 1. Neuropathy
- 2. Infection
- 3. PAD (ischemia)
 - Strongest prognostic indicator for non-healing ulcer
 - Strongest risk of amputation & death

Yamaguchi D. Wound 2011

Signs & Symptoms (problems)

1/3 have ischemic symptoms before

- Neuropathy
- Infection

40% have not investigated for PAD at all

1/2 amputated patients have no vascular assessment before.

Delayed revascularization

 \rightarrow Worse outcomes and higher amputation/ mortality

Br J Surg 2010

DFUs associated with PAD in Thai Population

<u>Delayed in diagnosis & treatment</u> <u>Consequence</u>

Possibility of revascularizationMajor amputation & Mortality

SOURCE : Thai Vascular Association

Major Symptoms of PAD

Patients with PAD have a reduced functional capacity that limits their ability to perform daily activities.

Abnormal skin color

Skin (of extremities) turns to a pale or purple color. Numbness sometimes appears together.

Coldness

Cold sensation in one or both legs/ hands

Rest pain

Occlusion of the lumen of 90% or more will likely produce pain even at rest.

Other symptoms

Erectile dysfunction Peripheral Neuropathy

Claudication

Pain in one or both legs on walking, primarily affecting the calves, that does not go away with continued walking and is relieved by rest

Condition	Location	Prevalence	Characteristic	Effect of exercise	Effect of rest	Effect of position	Other characteristic
Calf IC	Calf muscles	3% of adult population	Cramping, aching discomfort	Reproducible onset	Quickly relieved	None	May have atypical limb symptoms
Thigh and buttock IC	Buttocks, hip, thigh	Rare	Cramping, aching, discomfort	Reproducible onset	Quickly relieved	None	Impotence. May have normal pedal pulses with isolated iliac artery disease
Foot IC	Foot arch	Rare	Severe pain	Reproducible	Quickly	None	Also may present
Chronic compartment syndrome	Calf muscles	Rare	Tight, bursting pain	After much exercise (jogging)	Subsides very slowly	Relief with elevation	Typically heavy muscled athletes
Venous claudication	Entire leg, worse in calf	Rare	Tight, bursting pain	After walking	Subsides slowly	Relief speeded by elevation	History of iliofemoral deep vein thrombosis, signs of venous congestion, edema
Nerve root	Radiates down	Common	Sharp	Induced by	Often present	Improved by	History of back
Symptomatic Baker cyst Nip arthritis	Hehind knee, down calf Lateral hip, thigh	lsch : Typ -	nemic bical leg Crampir	Claudi symptor ng/aching	cation ms g/discon	nfort	P 1
Spinal stenosis	Often bilateral buttocks, posterior leg	-	Reprodu	iciple on	set & Q		015:61:2S-41
Foot/ankle arthritis	Ankle, foot, arch			CACICISC		weight	activity level
						-	and present at

rest

Investigations (problems)

Non-compressible vessels due to calcified vessel wall - ABI can be false elevated

Interpretation of ABI

> 1.30	Noncompressible
0.91–1.30	Normal
0.41-0.90	Mild-to-moderate peripheral arterial disease
0.00-0.40	Severe peripheral arterial disease

Arterial wall calcification

- : Non-compressible
- : False elevated ankle pressure
- : Need alternative measurements

Waveform analysis

Volume Plethysmography

Segmental volume plethysmography in peripheral vascular disease Variations in the contours of the pulse volume recording with segmental volume plethysmography reflect the severity of peripheral vascular disease Hild disease is characterized by the absence of a dicrotic notch. With progressive obstruction, the upstroke and downstroke become equal, and with severe disease, the amplitude of the waveform is blunted.

O2 measurement

1-

-

2-

3-

Peripheral Artery Disease : Diagnosis

- History taking
 - Walking problem
 - Back pain

Physical examination

- <u>Sign of chronic PAD</u>
- <u>Pulse exam.</u>

Critical Limb Ischemia

Inadequate arterial blood flow to accommodate the metabolic needs of resting tissue

- Rest pain, Gangrene & Ulcer
 - Ankle systolic pressure <50 mmHg
 - Toe systolic pressure <30 mmHg

TASC II, Consensus on PAD 2007

A 48-year-old female presents a chronic claudication on her feet for several months. Physical Exam. – absent bilateral pedal pulses & ankle pressure 50 mmHg

Treatment of PAD

- Asymptomatic PAD
- Intermittent claudication <u>Ankle pressure >50 mmHg</u>
 → Exercise & Medical treatments
- Critical limb ischemia <u>Ankle pressure <50 mmHg</u>
 - \rightarrow Medical treatments
 - \rightarrow Revascularization

Exercise Therapy for PAD

- : Cornerstone in claudication
- : Increase the walking distance, 50-200% roughly.
- : Patient-specific limitation

<u>Mechanism</u>

- Enlargement of existing collateral vessels
- Exercise induced angiogenesis
- Enhanced NO endothelium-dependent vasodilatation of the microcirculation
- Improved bioenergetics of skeletal muscle
- Improved hemorrheology

Exercise vs Stenting for Claudication

Six-Month Outcomes From the Claudication: Exercise Versus Endoluminal Revascularization (CLEVER) Study

Symptomatic AIOD

Peak walking time \rightarrow 2-11 min

Rx conditions \rightarrow

Medical Rx(OMC), Exercise (SE), Stenting (ST)

End points

Primary- Peak Walking Time

Circulation 2012

Exercise vs Stenting for Claudication

Six-Month Outcomes From the Claudication: Exercise Versus Endoluminal Revascularization (CLEVER) Study

<u>Results</u>

PWT improved by 1.2±2.6 minutes in Medical Rx group 5.8±4.6 minutes in Exercise group 3.7±4.9 minutes in Stenting group

Circulation 2012

<u>Cilostazol</u> is a phosphodiesterase inhibitor with vasodilator and antiplatelet properties.

Improves maximal walking distance 40-60% after 3-6 months of therapy. (100mg orally 2 times a day)

<u>Cilostazol</u> increases NO in endothelial cell

Vascular smooth muscle cells relaxation Peripheral vascular bed dilatation

JVS 2007

Role of Revascularization for Claudication

: <5% of the IC patients will develop symptoms of advanced ischemia \rightarrow Benign

: Durable benefit of the revascularization Technique

Indications

Significant functional limiting disability

Asymptomatic AIOD for provide vascular access for another cardiovascular implant

JVS 2015;61:2S-41S

Treatment of PAD

Critical limb ischemia Ankle pressure <50 mmHg
 Revascularization
 Open surgery
 Low surgical risk, diffuse disease
 Endovascular surgery
 High surgical risk, focal disease

Axillo-bifemoral Bypass

Femoro-popliteal Bypass

Femeral-Posterior Tibial Artery Bypass

Femeral-Posterior Tibial Artery Bypass

Post-Operative Study

MAHAHAJ NAKURN CHIANGMAI lm:10 DERIVED\SECONDARY **RALUEKPRAIPANA BOEBLA** 061Y M 312569 512x512 Acc: 46992 Fy: 46992 2008/08/21 16-40 L 3 kVp:120 mA:250 ms:500 Pos:FFS Individually captured image 512x512x721 Transverse (0.78x0.78x1.00mm) Voxar 3

Preoperative Study

Adjuvant distal AVF

Spin: 0 Tilt: 0 Α 5

Vascular and Endovascular Surgical Techniques. 4th ed.

Iliac-femoral Artery : Angioplasty with primary stenting

Ischemic ulcer at 5th toe & rest pain Decrease pulse left femoral artery Ankle pressure 20 mmHg

Iliac-femoral Artery : Angioplasty with Primary Stenting

Ankle pressure 60 mmHg Ischemic ulcer & pain resolved Fem-pop segment \rightarrow No further treatment

Femoropopliteal Artery : Angioplasty with Stenting

Known case CAD S/P CABG 4 months ago Ischemic ulcer at dorsum of R foot & rest pain Decrease pulse right popliteal artery Ankle pressure 0 mmHg

Femoropopliteal Artery : Angioplasty with Stenting

Ischemic ulcer & pain improved Ankle pressure 50 mmHg

Ischemic ulcer at 1st toe & rest pain Decrease pulse right femoral artery Ankle pressure 50 mmHg

Ankle pressure 90 mmHg Ischemic pain resolved Metatarsal amputation

x/y 0.0/ E 0 Lut SUB_3

07

1-1858

o VOI

It: 0.0

POUKIE SAENGEAW

PHILIPS BV Pulsera

Morbidity after Infrainguinal Bypass for Claudication & Critical Ischemia

	First Year	3-5 Years
Time for healing	15-20 wk	—
Wound complications (%)	15-25	_
Persistent lymphedema (%)	10-20	Unknown
Graft stenosis (%)	20	20-30
Graft occlusion (%)	10-20	20-40
Major amputation (%)	5-10	10-20
Graft infection (%)	1-3	_
Perioperative death (%)	1-2	—
All death (%)	10	30-50

Probability of Failure after Bypass : When the Clinical Condition Is Present at Presentation

Predictor Variable	Probability of Failure (%)	Odds Ratio (95% CI)	
Impaired ambulation	58	6.4 (2.9-14.4)	
Infrainguinal disease	46	3.9 (1.6-9.8)	
ESRD	35	2.5 (1.2-5.4)	
Gangrene	34	2.4 (1.5-4.0)	
Hyperlipidemia	11	0.6 (0.34-0.93)	

Taylor SM, et al. J Am Coll Surg 2007

Key Points

- DM patients with vascular disease are associated with significant morbidity/mortality. Under-diagnosed Delayed proper treatment
- Revascularization is possible and should considered as the main stay treatment in CLI.

Endovascular Surgery

Bypass Surgery

Thank you for your attention