JUXTA-ANASTOMOTIC STENOSIS

PROXIMALIZATION OR JUMP GRAFT VS ANGIOPLASTY

Juxta-Anastomotic Stenosis (JAS)

JUXTA-ANASTOMOTIC STENOSIS Incidence

Juxta-anastomotic stenosis with a viriable reported incidence of 43-65%(up to 77%) is a major cause for early AVF failure and arrested maturation

> G.A.Beathard, et al. Kidney Int, 2003 Badero OJ, et al. Am J Kidney Dis, 2008

Characteristic Sites of Stenosis for the Three Most Common AVFs			
ACCESS TYPE	COMMON SITE		
Radiocephalic fistula	Juxta-anastomotic : 55–75% : Swing vein stenoses are the commonest (45.7%)		
Brachiocephalic fistula	Cephalic arch : 55% Juxta anastomotic : 22%		
Brachial artery-to- transposed basilic vein fistula	Proximal swing segment		

Keith Bertram Quencer, et al. AJR , 2015

RADIOCEPHALIC FISTULA

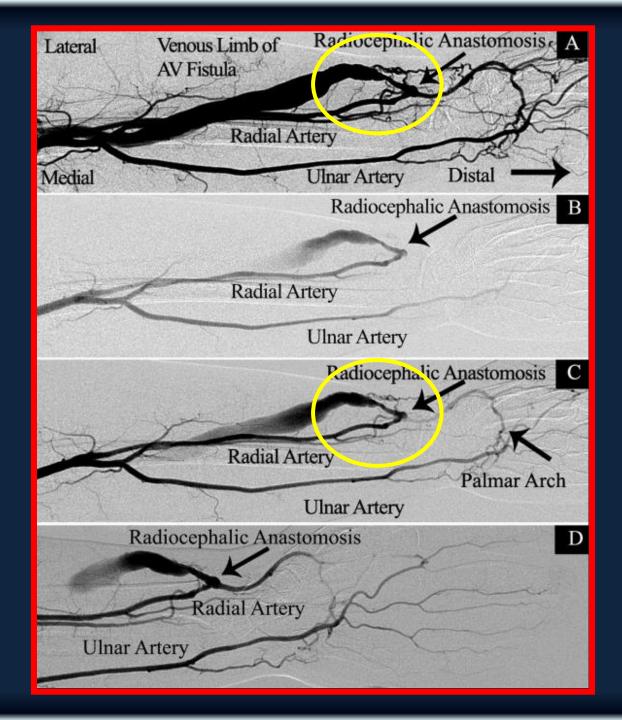
ADVANTAGES

- Ease of creation
- Upstream vein is preserved
- Low rate of steal syndrome
- Rare are ischemic monomelic neuropathy

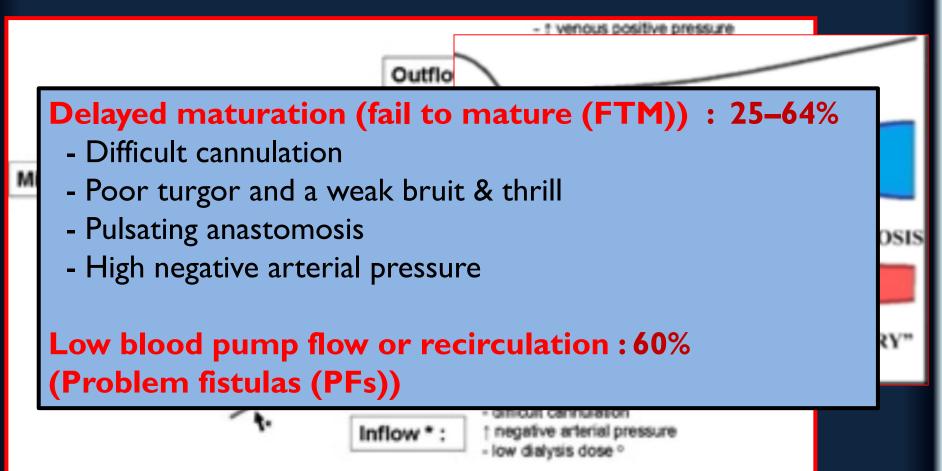
DISADVANTAGES

- Low rate of maturation
 35-40% in first year
- Low flow rate

Keith Bertram Quencer, et al. AJR , 2015


JUXTAANASTOMOTIC STENOSIS (JAS) Definition

 >50% reduction of diameter of the outflow vein within 2-5 cm from the arteriovenous anastomosis


> Asif A, et al.Kidney Int 2005 Nassar GM, et al. Clin J Am Soc Nephrol 2006 Kwon H, et al.Ann Vasc Surg. 2014

- 2. >50% in the artery, anastomosis or vein
 - the last 2 cm of the radial artery, and 5 cm of
 - the swing vein
 - within 3 cm of the anastomosis

Swinnen J, et al. J Vasc Surg. 2015 Long B, et al. J Vasc Surg. 2011

JUXTAANASTOMOTIC STENOSIS (JAS) Inflow stenosis : artery , anastomotic ,juxtaanastomotic

* Low blood pump flow or recirculation due to tight stenosis

Nicola Pirozzi, et al. J Vasc Access 2014

Juxta-Acastomotic Stenosis (JAS)

CAUSES OF JAS

- Unclear, but multiple hypotheses exist
- Loss of the vasa venosum during skeletonization for mobilization
- 2) Low and fluctuating shear stress
- 3) Kinking : increased turbulence of the vein
- 4) Torsional stress
- 5) AVF's geometry : angle , length

Keith Bertram Quencer, et al. AJR , 2015

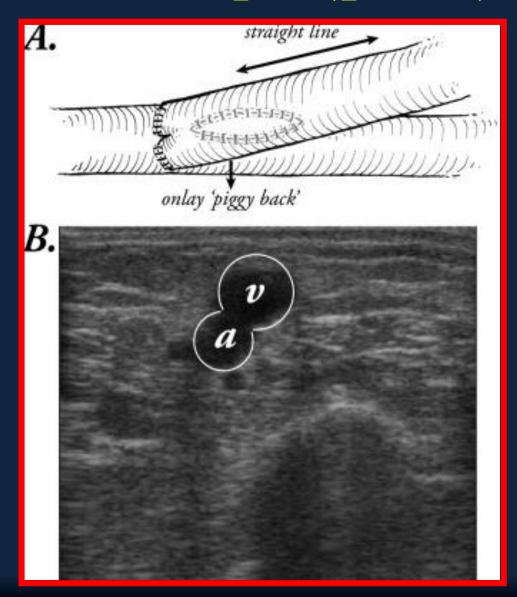
INTIMAL INJURY

NEOINTIMAL HYPERPLASIA

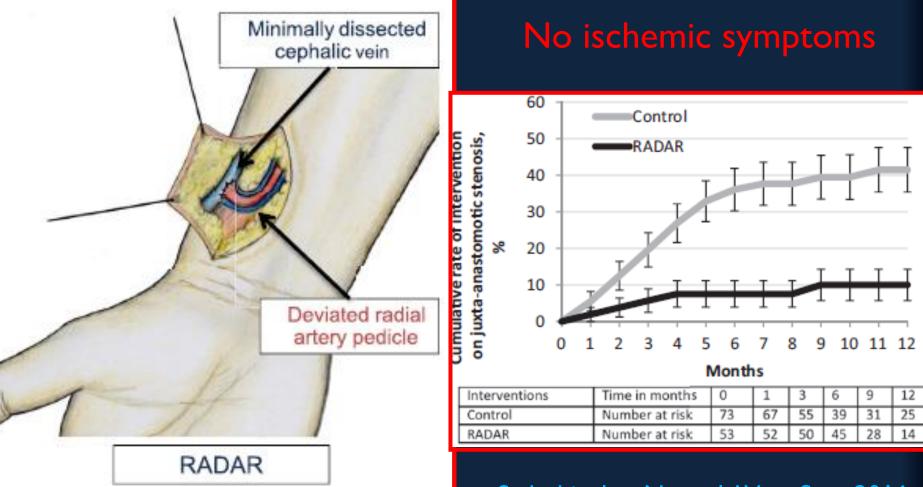
STENOSIS

REDUCTION IN JAS

- Piggyback straight onlay technique (pSOT)
 - underside of cephalic vein + anterior aspect of RA
 - reduced the I-year rate of JAS from 18.5% to 5.1%


Bharat A, et al. J Vasc Surg 2012

 Radial artery deviation and reimplantation (RADAR)


-End artery to side vein anastomosis

Sadaghianloo N, et al. J Vasc Surg 2016

Piggyback straight onlay technique (pSOT)

Radial artery deviation and reimplantation (RADAR)

Sadaghianloo N ,et al. J Vasc Surg 2016

Snuffbox AVF

- Patency rate comparable to radiocephalic fistula at wrist
- Non-diabetic male patients
- ?? Reduce JAS

Pflederer TA, et al Semin Dial, 2008

INDICATION

- The diameter is reduced by >50%
 + reduction in access flow or in measured dialysis
 dose (clinical or physiological abnormalities)
- Asymptomatic case : still debate

 Low flow (<500 mL/min) or significant drop
 (>20%) in two consecutive assessments

DOQI NKF.Am J Kidney Dis. 2006 Nicola Pirozzi, et al.J Vasc Access 2014 Swinnen J, et al. J Vasc Surg. 2015

 Immature fistula & Mature fistula
 I. Distal vascular access (RC AVF) Proximalization VS PTA

2. Proximal vascular access (BC AVF)

: a comparative study is lacking

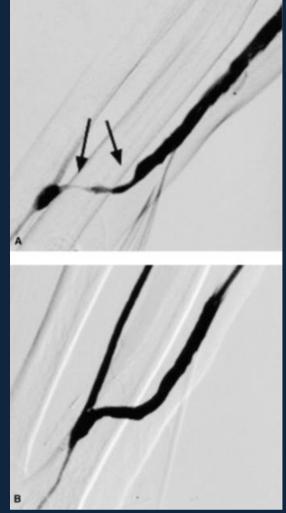
PTA vs Proximalization vs Jump grafting

(arterial steal and high output states)

Proximalization of Lt. Brachial AVF

Surgical approaches : proximalization of the anastomosis

- Proximal radio-cephalic anastomosis
- Local anesthesia

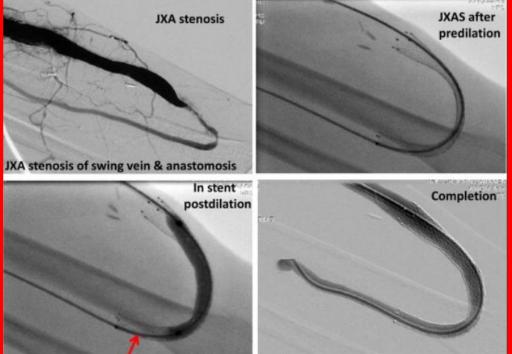

Keith Bertram Quencer, et al. AJR , 2015

Proximalization of RC AVE

Endovascular approaches : PTA+/- Stenting

- Retrograde direction (Venous puncture)
- Antegrade direction
 (Brachial artery puncture)
- 3) Balloon angioplasty6-mm (recommended size)
- Hard stenoses

 cutting balloons or ultrahigh
 pressure balloons (up to 32 atm)


Keith Bertram Quencer, et al. AJR , 2015

Endovascular approaches

: PTA+/- Stenting

Stenting

- I) Recurrent stenosis
- 2) Elastic recoil >30%
- 3) >I JXA stenosis
- 4) Single stenosis ≤ I cm of the anastomosis

Note: Post dilation balloon must stay clear of last >1cm of stent !!!

Swinnen J, et al. J Vasc Surg. 2015

Surgical approaches : Proximalization

 Necessary sacrifice of a portion of puncturable vein

2) Increased invasiveness

Endovascular approaches : PTA +/- Stenting

- I/3 fail to show increased blood flow
- 2) Rates of restenosis
 - : 2–2.5 times
- Increased number of procedures

Swinnen J, et al. J Vasc Surg. 2015 Keith Bertram Quencer, et al. AJR , 2015

MORE EVIDENCE

Proximalization (Neoanastomosis)

JVA ISSN 1129-7298

DOI: 10.5301/jva.5000444

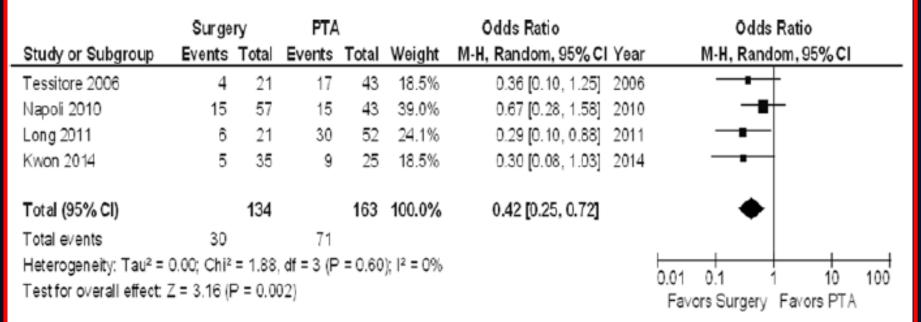
J Vasc Access 2015; 00 (00): 000-000

REVIEW

Preemptive open surgical vs. endovascular repair for juxta-anastomotic stenoses of autogenous AV fistulae: a meta-analysis

Christos Argyriou, Nikolaos Schoretsanitis, Efstratios I. Georgakarakos, George S. Georgiadis, Miltos K. Lazarides

Department of Vascular Surgery, Democritus University Hospital, Alexandroupolis - Greece


4 non-randomized cohort studies (297 patients)

Outcome : primary patency at 12 and 18 months and the assisted primary patency at 24 months

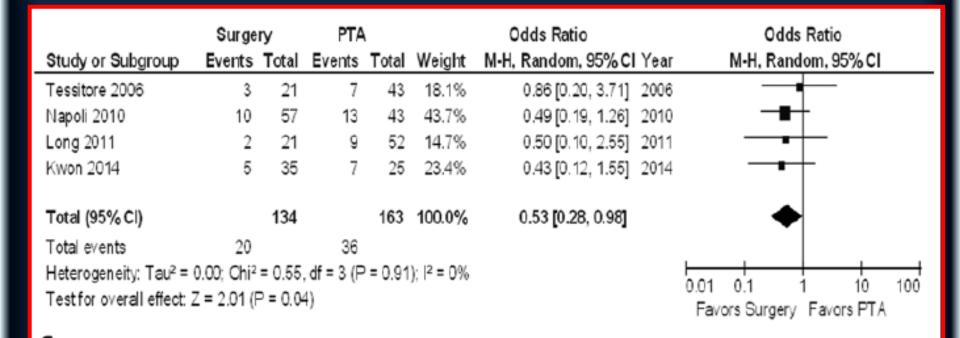
SURGICAL REPAIR VS ENDOVASCULAR REPAIR

	N (S/Endo)	Newcastle- Ottawa score	Stenosis definition	Forms of surgical repair	Forms of endo- vascular repair
Tessitore et al 2006 (7)	64 (21/43)	7.6	>50% of the first 5cm of the vein	Neoanastomosis short PTFE (n = 10)	PTA
Napoli et al 2010 (8)	100 (57/43)	7	In the artery, anastomosis or vein	Neoanastomosis	PTA (high pressure balloons)
Long et al 2011 (9)	73 (21/52)	8.3	>50% In the artery, anasto- mosis or vein	Neoanastomosis	PTA (high pressure balloons)
Kwon et al 2014 (10)	60 (35/25)	8.3	>50% of the first 3cm	Neoanastomosis	PTA (2 pts aspiration thrombectomy)

Primary fistula patency at 12 months

а

p -value = 0.002


Primary fistula patency at 18 months

	Surge	ry	PTA	4		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Year	M-H, Random, 95% Cl
Tessitore 2006	5	21	24	43	19.8%	0.25 [0.08, 0.80] 2006	
Napoli 2010	16	57	20	43	39.1%	0.45 [0.20, 1.03] 2010	
Long 2011	7	21	33	52	23.7%	0.29 [0.10, 0.84] 2011	_ _
Kwon 2014	5	35	9	25	17.3%	0.30 [0.08, 1.03] 2014	
Total (95% CI)		134		163	100.0%	0.33 [0.20, 0.56]	•
Total events	33		86				
Heterogeneity: Tau ² = 0.00; Chi ² = 0.85, df = 3 (P = 0.84); l ² = 0%							
Test for overall effect: $7 = 4.13$ ($P < 0.0001$)					0.01 0.1 1 10 100 Favors Surgery Favors PTA		

b

p -value < 0.0001

Assisted primary patency at 24 months

p -value = 0.04

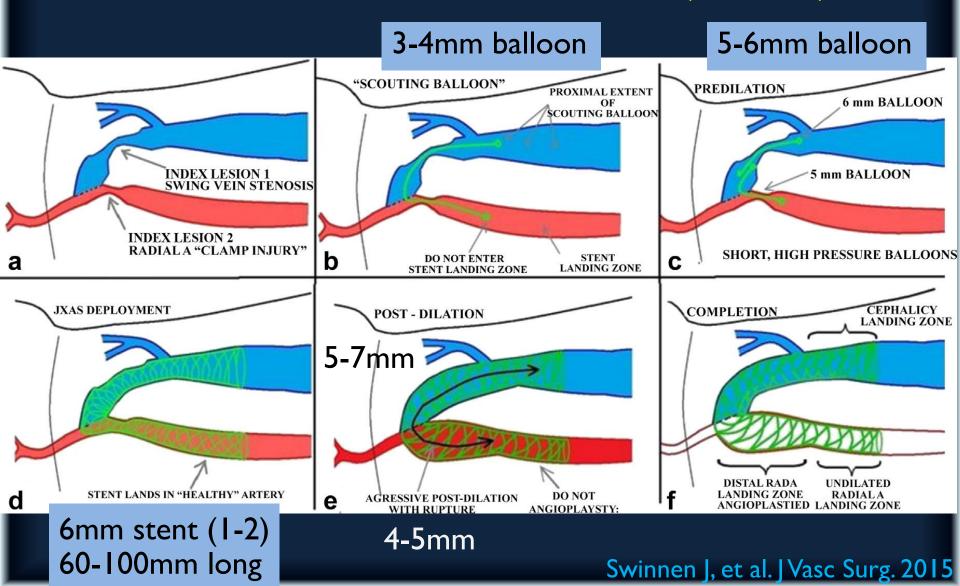
One-year primary patency rates

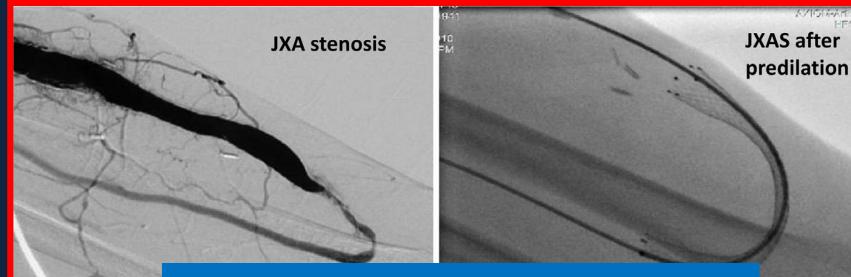
Author	Year	Type of repair	Patency %	, •
Lipari et al	2007	Surgery	81	
Kim et al	2011	Surgery	97	
Mallik et al	2011	Surgery	78.5	
Manninen et al	2001	ΡΤΑ	20	
Asif et al	2006	ΡΤΑ	47	
Cohen et al	2009	ΡΤΑ	56	
Swinnen et al	2015	PTA and stenting	59	
Giuffrida et al	2017	PTA (Z-configuration)	54.1%	

Developed endovascular techniques

- Routine rupture of stenoses and frequent use of uncovered nitinol stents
 - : prevent recoil

Swinnen J, et al. J Vasc Surg. 2015

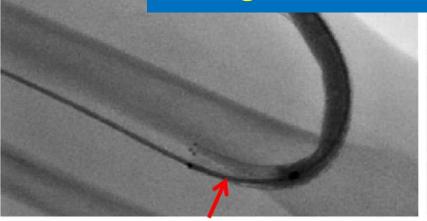

• "V shape configuration" balloon angioplasty


Giuffrida S, et al. Ann Vasc Med Res. 2017

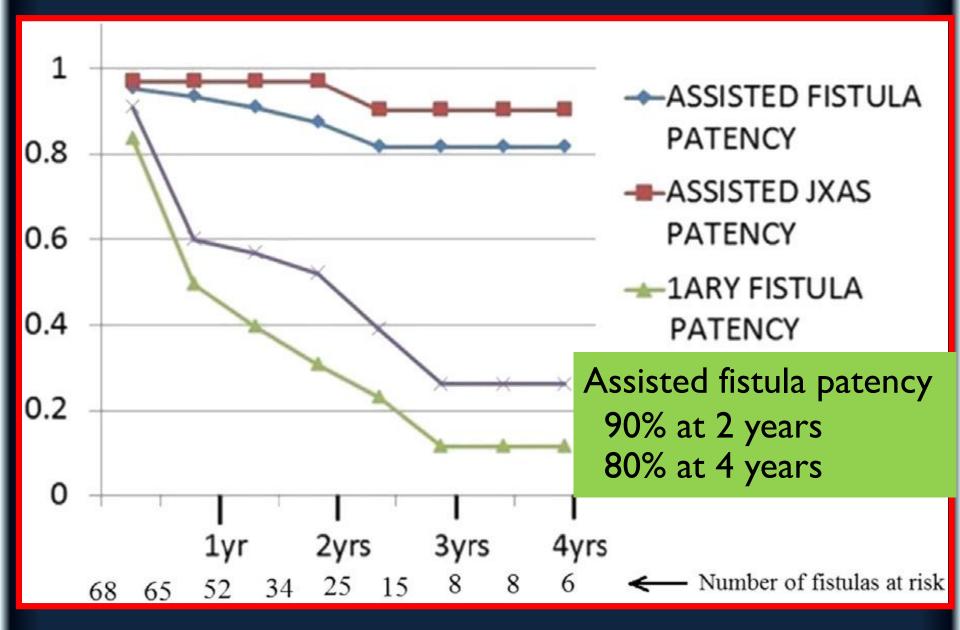
• Drug eluting balloons (DEB)

Patanè D, et al. J Vasc Access. 2014 Giuffrida S, et al. Il giornaleitaliano di Radiologia Medica. 2016

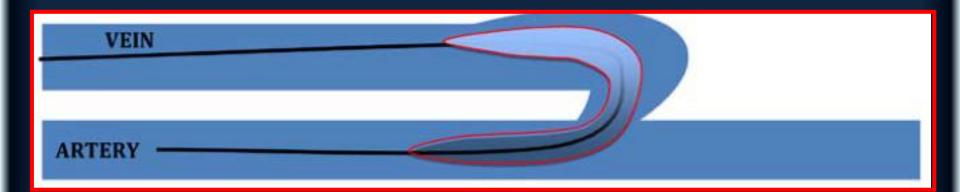
Rupture of stenoses + Uncovered nitinol stents(JXAS)



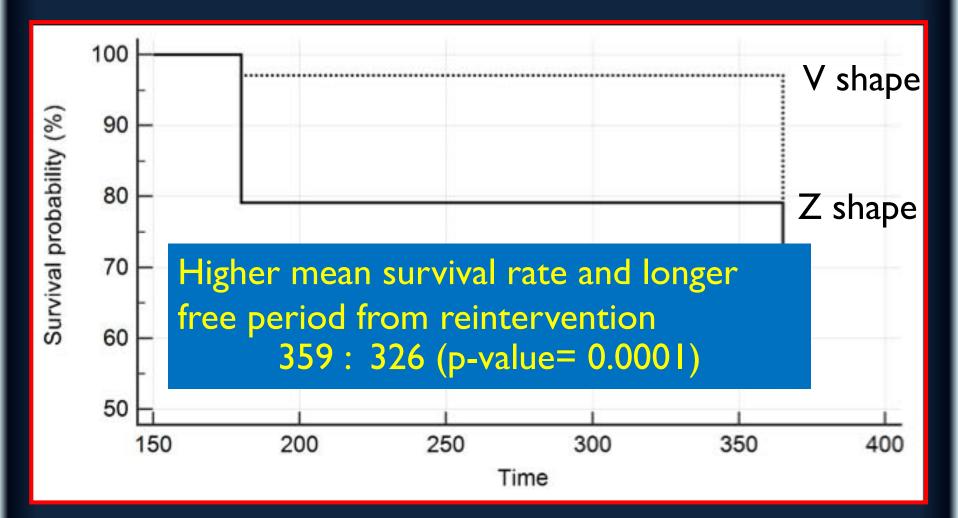
JXA stenosis of Technical success rate 97%


mpletion

No significant complications occurred


Note: Post dilation balloon must stay clear of last >1cm of stent !!!

Swinnen J, et al. J Vasc Surg. 2015


Swinnen J, et al. J Vasc Surg. 2015

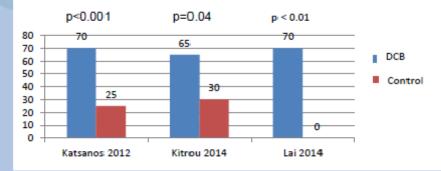
"V shape configuration" balloon angioplasty

- Retrograde access
- Crossed with 4 F, angled catheter
- Thin guidewire (0.014'',0.018'')
- 3-4 mm, low profile, compliant balloon(suitable diameter)
- Technical and clinical successes : 100%

Giuffrida S, et al.Ann Vasc Med Res. 2017

Primary Patency rates

- 97% (100/103) in 6 months
- 79.6% (82/103) in 12 months


Giuffrida S, et al.Ann Vasc Med Res. 2017

Drug eluting balloons (DEB)

RCTs: DCB vs PTA

	Katsanos 2012 / 2015 ^[1,2]	Kitrou 2014 ^[3]	Lai 2014 ^[4]	
Design	Prospective, randomized, single centre	Prospective, randomized, single centre	Prospective, randomized, single centre	
Devices	IN.PACT DCB vs. High-pressure PTA	IN.PACT DCB vs. High Pressure PTA	SeQuent Please vs. POBA	
# Patients	40 (1:1)	40 (1:1)	10 (20 lesions; 1:1)	
Primary Endpoint	Primary Patency 6M / 12M	TLR-free survival	Freedom from TLR (FTLR)	
Anastomosis	AVF and AVG	AVF	AVF	
Outcomes: DCB vs. control	1284 - 250/ 128		FTLR: 251T vs. 103T 6M PP 70% vs. 0% 12M PP 20% vs. 0% p < 0.01	

Primary Patency @ 6 Months

Kitrou PM et al. J Vasc Interv Radiol. 2015 Mar;26(3):348-54
 Katsanos et al. J ENDOVASC THER 267 2012;19:263-272
 Kitrou PM et al. European Journal of Radiology 84 (2015) 418-423
 Lai C-C et al. J Vasc Interv Radiol 2014; 25:535-541a

Drug eluting balloons (DEB)

	Patanè 2014 [1]	Swinnen 2015 [2]	lerardi 2017 [3]	Kitrou 2017 [4]
Design	Prospective, single centre	Retrospective, single centre	Retrospective, single centre	Retrospective, single centre
DCB	Unbekannt	IN.PACT DCB	Cardionovum + Cuttting balloon	Lutonix
# Patients	26	37	50	39
Primary Endpoint	Primay Patency @ 6M / 12M / 24M	TLR-free survival	Primary Patency @ 8M	Primary Patency@ 6M
Anastomosis	AVF	AVF	AVF + AVG	AVF + AVG
	6M: 96.1% 12M: 81/8% 24M: 57.8%	12M TLR-free: 69% vs. 19% p < 0.001	8M: 87.7%	6M: 72.2%

[1] Patanè D et al. J Vasc Access 2014; 15(5): 338 - 343

[2] Swinnen JJ et al. J Vasc Access 2015; 16 (5): 388-393

[3] Ierardi AM et al. Radiol med (2017) 122:69–76

[4] Kitrou PM et al. Cardiovasc Intervent Radiol (2017) 40:50–54

CONCLUSION

PTA remains a valuable but less durable option
 Multiple stenoses , length of the access is a concern

Endovascular techniques has been developed
 : waiting for large well-controlled comparative study