Handgrip exercise AVF and AVG

Asst.Prof. MUJALIN PRASANNARONG, Ph.D.

Department of Physical Therapy, Faculty of Associated Medical Sciences, CMU February 9, 2019

Exercise in vascular access of CKD patients

- K/DOQI recommended that pre- and postoperative exercise are helpful to improve vascular access maturation.
 - Increase hyperemia and muscle mass
 - Enhance vein prominence
 - Decrease superficial fat
- Preoperative exercise increase in venous diameters and is significantly related to an increase in AVF maturation.

Upper extremity exercise training programs

- Tools
 - Rubber rings
 - Elastic bands
 - Soft ball
 - Tennis ball

- Dumbbell
- Hand grip
- Manual pressure with isometric exercise
- Tourniquet with isometric exercise

- Type of exercise
 - Isometric exercise
 - Isotonic exercise
- No report of adverse effects of the exercise on the maturation of AVF.
- There is still lack of evidence support the efficacy of UE exercises over draining vein diameter, wall thickness, and blood flow rate in the maturation process of AVF in CKD patients.

Study	Design	Participants	Intervention	Outcome measures
Kim (2012)	Quasi- experimental	<i>n</i> =26 Age: 50–70 years	Upper limb exercises (12 haemodialysis patients who do not have a normal range of static intra access pressure vein	Reduction of the risk of arteriovenous fistula stenosis
		Gender: 13 male, 13 female	Material: ball, rubber band and massage 3–4 times a day	
			Control: Upper limb exercises (14 patients who have a normal range of static intra access pressure vein score)	
Salimi et al (2013)	Randomised controlled trial	<i>n</i> =50	Isometric exercises (ball, halter, flex-band and the tourniquet) 4 times a week for 4 weeks	The fistula maturation: vein diameter, wall
		Age (mean): 51.12	. ,	thickness, distance and
		Gender: 40 male, 10 female	Control: simple exercises to open and close the fingers	taxa vein anastomosis of blood skin
Kong et al	Randomised	<i>n</i> =18	Handshake exercise with grip, three sets of 10	Size of the cephalic vein,
(2014)	controlled trial	Age (mean): 63.9	repetitions twice in the morning and twice in the afternoon (Handgrip)	blood flow volumeGrip strength, clamping
		Gender: 6 male, 12 female	Exercises with soft ball for 4 weeks, three sets of 10 repetitions twice in the morning and twice in the afternoon	force (forceps and palmar) and circumference of the forearm

Fuzari et al. Int J Ther Rehabil. 2017;24(3):98-104.

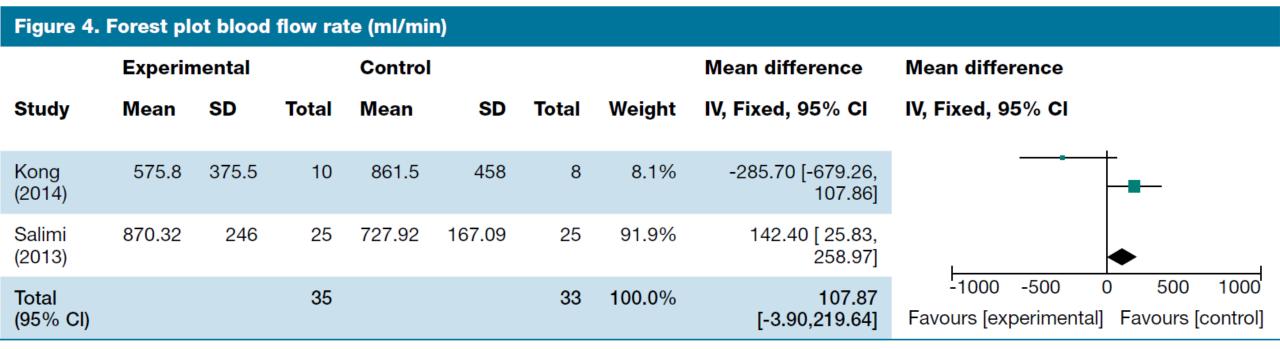

UE exercise and vein diameter

Figure 3. Forest plot draining vein diameter (mm)									
	Experimental		Control		Mean difference	Mean difference			
Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Kong (2014)	7	1.3	10	7.4	1.2	8	43.7%	-0.40 [-1.56, 0.76]	
Salimi (2013)	7.68	1.23	25	6.73	1.21	25	56.3%	0.95 [0.27, 1.63]	-100 -50 0 50 100 Favours [experimental] Favours [control]
Total (95% Cl)			35			33	100.0%	0.36 [-0.95, 1.67]	

Heterogeneity: Tau^z=0.68; Chi^z=3.89; degree of freedom=1 (P = 0.05); 1^z=74%; Test for overall effect: Z=0.54 (P=0.59); SD: standard deviation; IV: intravenous; CI: confidence interval

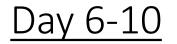
Fuzari et al. Int J Ther Rehabil. 2017;24(3):98-104.

UE exercise and blood flow rate

Heterogeneity: Chi^z = 4.18, degree of freedom=1 (P=0.04); 1^z=76% Test for overall effect: Z=1.89 (P=0.06); SD: standard deviation; IV: intravenous; CI: confidence interval

Fuzari et al. Int J Ther Rehabil. 2017;24(3):98-104.

<u>Day 1</u>: rest and elevate the operated arm <u>Day 2-3</u>:


Salimi et al., 2013:

- RCT of postoperative exercise (brachiocephalic AVF: a side to end anastomosis)
- 2 groups:
 - Control group: simple open-close hand exercise (isotonic exercise)
 - Exercise group: structured exercise program (isometric exercise)
- 4 times/day (morning, noon, afternoon, night)
- 2 weeks

1D

Salimi et al. J Vasc Access. 2013;14(3):239-44.

<u>Day 4-5</u>

<u>Day 11-13</u>

Salimi et al. J Vasc Access. 2013;14(3):239-44.

Duration of exercise?

Parameter	Assessment time	Case	Control	P-value
	Pre-exercise	5.36±1.02	5.10±1.17	0.39
Draining vein diameter (mm)	Post-exercise	7.68±1.23	6.73±1.21	0.009
	Pre-exercise	0.28±0.05	0.31±0.07	0.10
Vein wall thickness (mm)	Post-exercise	0.53±0.10	0.47±0.10	0.04
	Pre-exercise	4.54±1.22	4.24±1.39	0.42
Skin-vein distance (mm)	Post-exercise	2.59±0.77	2.44±0.89	0.52
	Pre-exercise	0.24±0.09	0.21±0.09	0.28
Vein area (mm)	Post-exercise	0.47±0.13	0.39±0.12	0.02
	Pre-exercise	439.80±181.81	411.44±187.01	0.58
BFR (mL/min)	Post-exercise	870.32±246	727.92±167.09	0.02

All results are presented as mean±SD. Pre-exercise study was performed in the first 24 hours after the procedure. Post-exercise study was performed two weeks after the procedure. BFR, blood flow rate

Salimi et al. J Vasc Access. 2013;14(3):239-44.

GD Grip (GD Co., Incheon, Korea).

Kong et al., 2014:

- RCT of postoperative exercise (2 groups)
- Control group (n=8): simple open-close hand exercise (isotonic exercise)
 - Squeeze soft ball
 - 10 squeezes/set, 3 sets (1-minute-rest interval)
- Exercise group (n=10): structured exercise program (isotonic exercise)
 - Squeeze hand grip tool: resistance at 10 RM
 - 10 squeezes/set, 3 sets (1-minute-rest interval)
- All patients exercised
 - 4 times/day (2 times in the morning and 2 times in the afternoon)
 - Exercise everyday
 - 4 weeks

Kong et al. Ann Rehabil Med. 2014;38(5):648-57

		Before exercise	After exercise	p-value
	Pinch strength (kg)			
	Tip pinch	$2.4{\pm}0.9$	3.2±1.0	0.005*
	Palmar pinch	3.0±1.2	3.8±1.1	0.005*
	Lateral pinch	3.4±1.2	4.5±1.1	0.005*
Lange Charles	Grip strength (kg)	10.8±5.3	16.7 ± 6.1	0.008*
LULAN COLLE	Circumference (cm)	22.0±0.8	22.7±0.9	0.005*
	Vessel size (mm)	5.5±0.7	7.0±1.3	0.017^{*}
GD Grip (GD Co., Incheon, Korea).	Blood flow velocity (cm/sec)	27.0±30.8	34.9±26.1	0.093
	Blood flow volume (mL/min)	299.3±330.9	575.8±375.5	0.012*
		Before exercise	After exercise	p-value
	Pinch strength (kg)			
	Tip pinch	$2.4{\pm}0.6$	2.6±0.6	0.017^{*}
	D los states 1	0.7.1.0	0.0.0	0.000

Soft Ball (MCS Co., Xiamen, China)

Palmar pinch 3.7 ± 1.0 3.9 ± 0.8 0.066 Lateral pinch 0.021* 4.5 ± 1.3 5.1 ± 1.3 Grip strength (kg) 13.0 ± 4.8 16.6 ± 5.3 0.057 Circumference (cm) 23.2 ± 1.9 23.6 ± 2.1 0.024* Vessel size (mm) 5.6 ± 1.3 7.4 ± 1.2 0.018^{*} Blood flow velocity (cm/sec) 20.3 ± 18.9 43.7 ± 18.6 0.091 Blood flow volume (mL/min) 241.7±224.6 861.5±458.0 0.043^{*}

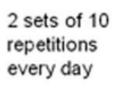
Values are expressed as mean±standard deviation

*p<0.05, significant difference between before and after exercise.

Kong et al. Ann Rehabil Med. 2014;38(5):648-57

Type of exercise? Volume of exercise?

	Р	Percentage increase (%)		
	GD Grip	Soft Ball	p-value	
Pinch Strength (kg)				
Tip Pinch	36.6±24.3	12.2±9.0	0.034*	
Palmar Pinch	36.7 ± 56.7	10.1±19.2	0.012*	
Lateral Pinch	40.7±27.9	18.1±21.4	0.122	
Grip Strength (kg)	80.2±76.0	39.7 ± 47.0	0.315	
Circumference (cm)	3.3±2.5	1.7 ± 1.4	0.237	
Vessel size (mm)	30.0±21.0	33.5±12.9	0.779	
Blood flow velocity (cm/sec)	194.99 ± 198.5	592.5±701.8	0.536	
Blood flow volume (mL/min)	304.7 ± 181.4	1176.5±1391.3	1.000	


Values are expressed as mean±standard deviation

 $^{*}p<0.05$, significant difference between two groups.

Kong et al. Ann Rehabil Med. 2014;38(5):648-57

1. Elbow Flexion-Extension

2. Wrist Flexion-Extension

3. Hand Open-Close

2 sets of 10 repetitions every day

Fontseré et al., 2016:

- RCT of postoperative exercise (proximal and distal AVF localizations)
- 2 groups: exercise and control
- Arm and hand exercises (isotonic exercise)
- Exercise everyday
- 4 weeks

2 sets of 25 repetitions every day

Fontseré et al. Hemodial Int. 2016;20(2):306-14.

4 weeks after the experiment

		Ultrasonographic maturation				
		No	Mature	Total		
Clinical maturation	No	7	1	8 (11.6%)		
	Mature	8	53	61 <u>(88.4%</u>)		
Total		15 (21.7%)	54 (<u>78.3%</u>)	69		
The kappa coefficient was good (0.	.539, 95% confid	lence interval: 0.283–0.795).	Intensity of ex	ercise?		
		Randomiza	Randomization group			
Variable		Control $(n = 31)$	Exercise $(n = 38)$	Р		
Venous diameter (mm)		6.46	6.33	0.732		
Increase in venous diameter (mm)		2.48	2.08	0.300		
Venous depth (mm)		2.49	2.43	0.850		
AVF flow (brachial arterial flow)		1328.1	1324.9	0.985		
Increase in AVF flow		431.3	388.7	0.742		
Handgrip (kg)		21.60	24.68	0.182		
Increase in handgrip (kg)		-0.87	+1.65	< 0.001		
Clinical maturation		80.6%	94.7%	0.069		
Ultrasonographic maturation		74.2%	81.6%	0.459		

Fontseré et al. Hemodial Int. 2016;20(2):306-14.

Challenge questions of exercise program on AVF maturation

- Duration ?
- Type ?
- Volume ?
- Intensity ?

Thank you for your attention